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a b s t r a c t

What is the role of language in cognition? Do we think with words, or do we use words to communicate
made-up decisions? The paper briefly reviews ideas in this area since 1950s. Thenwe discussmechanisms
of cognition, recent neuroscience experiments, and corresponding mathematical models. These models
are interpreted in terms of a biological drive for cognition. Based on the Grossberg–Levine theory of drives
and emotions, we identify specific emotions associated with the need for cognition. We demonstrate
an engineering application of the developed technique, which significantly improves detection of
patterns in noise over the previous state-of-the-art. The developed mathematical models are extended
toward language. Then we consider possible brain–mind mechanisms of interaction between language
and cognition. A mathematical analysis imposes restrictions on possible mechanisms. The proposed
model resolves some long-standing language–cognition issues: how the mind learns correct associations
between words and objects among an astronomical number of possible associations; why kids can talk
about almost everything, but cannot act like adults, what exactly are the brain–mind differences; why
animals do not talk and think like people. Recent brain imaging experiments indicate support for the
proposed model. We discuss future theoretical and experimental research.

Published by Elsevier Ltd

1. Nativism, cognitivism, evolutionism

Complex innate mechanisms of the mind were not appreciated
in the first half of the last century. Thinking of mathematicians
and intuitions of psychologists and linguists were dominated by
logic. Considered mechanisms of logic were not much different
for language or cognition; both were based on logical statements
and rules. Even fundamental Gödelian theory (Gödel, 1931/1994)
establishing the deficiency of logic did notmove thinking about the
mind away from logic.
Contemporary linguistic interests in the mind mechanisms

of language were initiated in the 1950s by Chomsky (1965).
He identified the first mysteries about language that science
had to resolve. ‘‘Poverty of stimulus’’ addressed the fact that
the tremendous amount of knowledge needed to speak and
understand language is learned by every child around the world
even in the absence of formal training. It has seemed obvious
to Chomsky that surrounding language cultures do not carry
enough information for a child to learn language, unless specific
language learning mechanisms are inborn in the mind of every
human being. This inborn mechanism should be specific enough
for learning complex language grammars and still flexible enough
so that a child of any ethnicity from any part of the world would
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learn whichever language is spoken around, even if he or she
is raised on the other side of the globe. Chomsky called this
inborn learning mechanism Universal Grammar and set out to
discover its mechanisms. He emphasized the importance of syntax
and thought that language learning is independent of cognition.
This approach to language based on innate mechanisms, is called
nativism.
Chomsky and his school initially used available mathematics

of logical rules, similar to rule systems of artificial intelligence. In
1981, Chomsky (Chomsky, 1981) proposed a new mathematical
paradigm in linguistics, rules and parameters. This was similar
to model-based systems emerging in mathematical studies of
cognition. Universal properties of language grammars were
supposed to be modeled by parametric rules or models, and
specific characteristics of grammar of a particular language were
fixed by parameters, which every kid could learn from a limited
exposure to the surrounding language. Another fundamental
change of Chomsky’s ideas (Chomsky, 1995) was called the
minimalist program. It aimed at simplifying the rule structure of
themindmechanism of language. Language wasmodeled in closer
interactions to other mindmechanisms, closer to themeaning, but
stopped at an interface between language andmeaning. Chomsky’s
linguistics still assumes that meanings appear independently from
language. Logic is the main mathematical modeling mechanism.
Many linguists disagreed with separation between language

and cognition in Chomsky’s theories. Cognitive linguistics emerged
in the 1970s to unify language and cognition, and explain
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creation ofmeanings. Cognitive linguistics rejected Chomsky’s idea
about a special module in the mind devoted to language. The
knowledge of language is no different from the rest of cognition,
and is based on conceptual mechanisms. It is embodied and
situated in the environment. Related research on construction
grammar argues that language is not compositional, not all phrases
are constructed from words using the same syntax rules and
maintaining the same meanings; metaphors are good examples
(Croft & Cruse, 2004; Evans & Green, 2006; Ungerer & Schmid,
2006). Cognitive linguistics so far has not led to computational
linguistic theory explaining how meanings are created. Formal
apparatus of cognitive linguistics is dominated by logic.
Evolutionary linguistics emphasized that language evolved

together with meanings. A fundamental property of language is
that it is transferred from generation to generation, and language
mechanisms are shaped by this process. (Christiansen & Kirby,
2003; Hurford, 2008). Evolutionary linguistics by simulation of
societies of communicating agents (Brighton, Smith, & Kirby, 2005)
demonstrated the emergence of a compositional language.

2. Cognition, dynamic logic, and the knowledge instinct

Consider a seemingly simple experiment. Close your eyes and
imagine an object in front of you. The imagined image is vague,
not as crisp and clear as with opened eyes. As we open eyes; the
object becomes crisp and clear. It seems to occur momentarily, but
actually it takes 1/5th of a second. This is a very long time for neural
brain mechanisms – hundreds of thousands of neural interactions.
Let us also note: with opened eyes we are not conscious about
initially vague imagination, we are not conscious about the entire
1/5th of a second, we are conscious only about the end of this
process: crisp, clear object in front of our eyes. The explanation of
this experiment has become simple after many years of research
that have found out what goes on in the brain during these 1/5th
of a second.

2.1. Instincts, emotions, concepts

Explaining this experiment requires us to considermechanisms
of concepts, instincts, and emotions. We perceive and understand
the world around due to the mechanism of concepts. Concepts
are like internal models of objects and situations; this analogy is
quite literal, e.g., during visual perception of an object, a concept-
model of the object stored in memory projects an image (top-
down signals) onto the visual cortex, which is matched there to an
image projected from the retina (bottom-up signal; this simplified
description will be refined later; see Grossberg (1988)).
The mechanism of concepts evolved for instinct satisfaction.

The word instinct is not used currently in the psychological
literature; the reason is that the notion of instinct was mixed
up with instinctual behavior and other not very useful ideas. We
use the word instinct to denote a simple inborn, non-adaptive
mechanism described in Grossberg and Levine (1987). Instinct is
a mechanism of the internal ‘‘sensor’’, which measures vital body
parameters, such as blood pressure, and indicate to the brainwhen
these parameters are out of safe range. This simplified description
will be sufficient for our purposes, more details could be found in
Gnadt and Grossberg (2008) and Grossberg and Seidman (2006)
and the references therein. We have dozens of such sensors,
measuring sugar level in blood, body temperature, pressure at
various parts, etc.
According to instinctual–emotional theory (Grossberg & Levine,

1987), communicating satisfaction or dissatisfaction of instinctual
needs from instinctual parts of the brain to decision making parts
of the brain is performed by emotional neural signals. The word
emotion refers to several neural mechanisms in the brain (Juslin &
Västfjäll, 2008); in this paper we always refer to the mechanism
connecting conceptual and instinctual brain regions. Perception
and understanding of concept-models corresponding to objects or
situations that can potentially satisfy an instinctual need receive
preferential attention and processing resources in the mind.
Projection of top-down signals from a model to the visual

cortex primes or makes visual neurons to be more receptive to
matching bottom-up signals. This projection produces imagination
that we perceive with closed eyes, as in the closed–open eye
experiment. Conscious perception occurs, as mentioned, after top-
down and bottom-up signals match. The process of matching
for a while presented difficulties to mathematical modeling, as
discussed below.

2.2. Combinatorial complexity, logic, and dynamic logic

Perception and cognition abilities of computers still cannot
compete with those of kids and animals. Most algorithms and
neural networks suggested since 1950s for modeling perception
and cognition, as discussed in Perlovsky (2006a), faced difficulty
of combinatorial complexity (CC). Rule systems of artificial
intelligence in the presence of variability has grown in complexity:
rules have become contingent on other rules, and rule systems
faced CC. Algorithms and neural networks designed for learning
have to be trained to understand not only individual objects,
but also combinations of objects, and thus faced CC of training.
Fuzzy systems required a fuzziness level to be set appropriately
in different parts of systems, also degrees of fuzziness vary in time,
an attempt to select efficient levels of fuzziness would lead to CC.
These CC difficulties were related to Gödelian limitations of

logic, they were manifestations of logic inconsistency in finite
systems (Perlovsky, 2000). Even approaches designed specifically
to overcome logic limitations, such as fuzzy logic and neural
networks, encountered logical steps in their operations: neural
networks are trained using logical procedures (e.g. ‘‘this is a chair’’),
and fuzzy systems required logical selection of the degree of
fuzziness.
To overcome limitations of logic, dynamic logic was proposed

(Perlovsky, 2000, 2006a; Perlovsky & McManus, 1991). In the next
section we summarize the mathematical description of dynamic
logic, here we describe it conceptually. Whereas logic works with
statements (e.g. ‘‘this is a chair’’), dynamic logic is a process from
vague to crisp, from vague statement, decision, plan, to crisp ones.
It could be viewed as fuzzy logic that automatically sets a degree
of fuzziness corresponding to the accuracy of learning models.
Dynamic logic corresponds to the open–close eye experiment:

initial states of models are vague. This experiment was recently
performed with much more details using brain imaging. Bar et al.
(2006) used functional Magnetic Resonance Imaging (fMRI) to
obtain high spatial resolution of processes in the brain, which they
combined with magneto-encephalography (MEG), measurements
of the magnetic field next to the head, which provided high
temporal resolution of the brain activity. Combining these two
techniques the experimenters were able to receive high resolution
of cognitive processes in space and time. Bar et al. concentrated
on three brain areas: early visual cortex, object recognition area
(fusiform gyrus), and object information semantic processing area
(OFC). They demonstrated that OFC is activated 130 ms after
the visual cortex, but 50 ms before object recognition area. This
suggests that OFC represents the cortical source of top-down
facilitation in visual object recognition. This top-down facilitation
was unconscious. In addition they demonstrated that the imagined
image generated by top-down signals facilitated from OFC to
cortex is vague, similar to the closed–open eye experiment.
Conscious perception of an object occurs when vague projections
become crisp and match the crisp and clear image from the retina,
and an object recognition area is activated.
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2.3. The knowledge instinct and neural modeling field theory

The process of matching concept-models in memory to
bottom-up signals coming from sensory organs is necessary for
perception; otherwise an organism will not be able to perceive
the surroundings and will not be able to survive. Therefore
humans and higher animals have an inborn drive to fit top-down
and bottom-up signals. We call this mechanism the instinct for
knowledge (1991 (Perlovsky, 2006a)). This mechanism is similar
to other instincts in that our mind has a sensor-like mechanism
that measures a similarity between top-down and bottom-up
signals, between concept-models and sensory percepts. Brain
areas participating in the knowledge instinct were discussed in
Levin and Perlovsky (2008). As discussed in that publication,
biologists considered similar mechanisms since 1950s; without
a mathematical formulation, however, its fundamental role in
cognition was difficult to discern. All learning algorithms have
somemodels of this instinct,maximizing correspondence between
sensory input and an algorithm internal structure (knowledge
in a wide sense). According to Grossberg and Levine (1987)
instinct–emotion theory, satisfaction or dissatisfaction of every
instinct is communicated to other brain areas by emotional neural
signals.We feel these emotional signals as harmony or disharmony
between our knowledge-models and the world. At lower layers
of everyday object recognition these emotions are usually below
the level of consciousness; at higher layers of abstract and general
concepts this feeling of harmony or disharmony could be strong,
as discussed in Perlovsky (2006b) it is a foundation of our
highermental abilities.We summarize now amathematical theory
combining the discussed mechanisms of cognition as interaction
between top-down and bottom-up signals at a single layer in
multi-layer heterarchical system following Perlovsky (2006a).
Neurons are enumerate by index n = 1, . . . ,N . These neurons

receive bottom-up input signals, X(n), from lower layers in the
processing heterarchy. The word heterarchy is used by many
neural and cognitive scientists to designate that the mind is
organized in an approximate hierarchy; this hierarchy is not exact,
cross-layer interactions are abundant (Grossberg, 1988);wewould
use hierarchy for simplicity. X(n) is a field of bottom-up neuronal
synapse activations, coming from neurons at a lower layer. Top-
down, or priming signals to these neurons are sent by concept-
models,Mh (Sh, n); we enumerate models by index h = 1, . . . ,H .
Eachmodel is characterized by its parameters, Sh. Models represent
signals in the following sense. Say, signal X(n), is coming from
sensory neurons activated by object h, characterized by parameters
Sh. These parameters may include position, orientation, or lighting
of an object h. ModelMh (Sh, n) predicts a value X(n) of a signal at
neuron n. For example, during visual perception, a neuron n in the
visual cortex receives a signalX(n) from retina and a priming signal
Mh (Sh, n) from an object concept-model h. A neuron n is activated
if both a bottom-up signal from lower layer input and a top-down
priming signal are strong. Various models compete for evidence
in the bottom-up signals, while adapting their parameters for
better match as described below. This is a simplified description of
perception. ModelsMh specify a field of primed neurons {n}, hence
the name for this modeling architecture,modeling fields.
The knowledge instinct maximizes a similarity measure

between top-down and bottom-up signals,

L({X}, {M}) =
∏
n∈N

∑
h∈H

r(h)l(n|h). (1)

Here l(n|h) is a partial similarity of a bottom-up signal in pixel
n given that it originated from concept-model h; functional shape
of l(n|h) often can be taken as a Gaussian function of X(n) with the
mean Mh (Sh, n). Partial similarities are normalized on objects (or
concepts) h being definitely present, and coefficient r(h) estimate
a probability of them actually being present. Similarity L accounts
for all combinations of signals n coming from any model h, hence
the huge number of items HN in Eq. (1); this is a basic reason
for combinatorial complexity of most algorithms. From time to
time a system forms a new concept-model, while retaining an old
one as well; alternatively, old concepts are sometimes merged or
eliminated. This requires a modification of the similarity measure
(1); the reason is that more models always result in a better fit
between the models and data. Therefore similarity (1) has to be
reduced using a ‘‘skeptic penalty function’’, p(N,M) that grows
with the number of models M , and this growth is steeper for a
smaller amount of data N .
The learning instinct demands maximizing the similarity L

over model parameters S. Dynamic logic maximizes similarity L
while matching vagueness or fuzziness of similarity measures to
the uncertainty of models. It starts with any unknown values of
parameters S and defines association variables f (h|n),

f (h|n) = r(h)l(n|h)
/∑
h′∈H

r(h′)l(n|h′). (2)

Dynamic logic determining the Modeling Field (MF) dynamics
is given by

df (h|n)/dt = f (h|n)
∑
h′∈H

[δhh′ − f (h′|n)] ·

[∂ lnl(n|h′)/∂Mh′ ]∂Mh′/∂Sh′ · dSh′/dt, (3)

dSh/dt =
∑
n∈N

f (h|n)[∂ lnl(n|h)/∂Mh]∂Mh/∂Sh, (4)

here

δhh′ is 1 if h = h′, 0 otherwise. (5)

Initially, parameter values are not known, and uncertainty of
partial similarities is high (e.g., if l(n|h) is modeled by Gaussian
functions, variances are high). So the fuzziness of the association
variables is high. In the process of learning, models become more
accurate, and association variables more crisp, as the value of
the similarity increases. The number of models is determined
in the learning process. The system always keeps a store of
dormant models, which are vague, have low r(h), and do not
participate in the parameter fitting; only their parameters r(h)
are updated. When r(h) exceeds a threshold, a model is activated;
correspondingly, an active model is deactivated when its r(h) falls
below the threshold. MF organization is similar to ART (Carpenter
& Grossberg, 1987) in that it models interaction between bottom-
up and top-down signals. It is different in that it fits all models in
parallel.
Dynamic logic process always converges (Perlovsky, 2000); it is

proven by demonstrating that at each time step in Eqs. (3) and (4)
(as long as the bottom-up signals remain constant), the knowledge
instinct (1) increases; thus dynamic logic and the knowledge
instinct are mathematically equivalent.

2.4. Perception example

Here we illustrate the developed technique with an example
described in Perlovsky (2006a), which demonstrates that the
described theory can find patterns below noise at about 100
times better in terms of signal-to-noise ratio, than previous state-
of-the-art algorithms. The reason for choosing such an example
is to demonstrate, in a relatively simple way, that engineering
algorithms based on the mind cognitive mechanisms significantly
exceed capabilities of ad hoc algorithms (Fig. 1).
As exact pattern shapes are not known and depend on unknown

parameters, these parameters should be found by fitting the



250 L. Perlovsky / Neural Networks 22 (2009) 247–257

3. Extension to language

All linguistic theories, as reviewed at the beginning of the
paper, are formulated as logical systems, and face combinatorial
complexity. This is possibly why computers do not understand
human language, and in particular, Google, Yahoo, and other search
engines, while being immensely useful, cause somuch frustrations
to their users. Extension of dynamic logic to language promises to
remedy the situation. Here we briefly summarize this extension
following Perlovsky (2006c). The challenge in extending dynamic
logic to language has been in substituting derivatives in Eqs. (3) and
(4) with equivalent procedures suitable for linguistic constructs
that are essentially discrete, non-differentiable structures. For
example, consider a phrase ‘‘Leonid sits in a chair’’. A language
learning procedure should be able to figure out that the gist of
this phrase, its most essential part is {sit, chair}; ‘‘Leonid’’ can be
substituted by many other nouns, and ‘‘in’’, ‘‘a’’ are even more
dispensable. The main idea of dynamic logic is learning sentence
structures not by trying all possible combinations of words, but by
taking a ‘‘derivative’’ of a phrasewith respect to constituent words.
But of course standard mathematical definition of a derivative is
not applicable to this situation in principle. Language constructs
are essentially discrete and non-differentiable.
A suitable derivative-like procedure was described in Perlovsky

(2006c). Here we summarize it for a word–phrase layer; where
bottom-up signals are comprised of words, top-down models
are phrases, and these phrase-models are learned without
combinatorial complexity. The bottom-up input data, X(n), in this
‘‘phrase-layer’’ MF system, are word strings, for simplicity, of a
fixed length, S, X(n) = {wn+1, wn+2 . . . wn+S}. Here wn are words
from a given dictionary of size K ,W = {w1, w2 . . . wK }, and n is the
word position in a body of texts. A simple phrase-model often used
in computational linguistics is ‘‘a bag of words’’, that is, a model is
a subset of words from a dictionary, without any order or rules of
grammar,

MLh(Sh, n) = {wh,1, wh,2 . . . wh,S}. (6)

A superscript L here denotes a language model, the param-
eters of this model are its words, MLh (Sh, n) = Sh = {wh,1,
Fig. 1. Finding ‘smile’ and ‘frown’ patterns in noise, an example of dynamic logic operation: (a) true ‘smile’ and ‘frown’ patterns are shown without noise; (b) actual image
available for recognition (signal is below noise, signal-to-noise ratio is between 1/2 and 1/4); (c) an initial fuzzy blob-model, the fuzziness corresponds to uncertainty of
knowledge; (d) through (h) show improvedmodels at various iteration stages (total of 22 iterations). Between stages (d) and (e) the algorithm tried to fit the data with more
than one model and decided, that it needs three blob-models to ‘understand’ the content of the data. There are several types of models: one uniformmodel describing noise
(it is not shown) and a variable number of blob-models and parabolic models, which number, location, and curvature are estimated from the data. Until about stage (g) the
algorithm ‘thought’ in terms of simple blob-models, at (g) and beyond, the algorithm decided that it needs more complex parabolic models to describe the data. Iterations
stopped at (h), when similarity (2) stopped increasing. This example is discussed in more detail in (Linnehan et al., 2003).
pattern model to the data. At the same time it is not clear which
subset of the data points should be selected for fitting. A previous
state-of-the-art algorithm, multiple hypothesis testing (Singer,
Sea, & Housewright, 1974) tries various subsets. In difficult cases,
all combinations of subsets and models are exhaustively searched,
leading to combinatorial complexity. In the current example the
searched patterns are shown in Fig. 2(a) without noise, and in
Fig. 2(b) with noise, as actually measured. Direct search through
all combinations of models and data leads to complexity of MN =
105000. A search in parameter space yields less complexity. Each
pattern is characterized by a 3-parameter parabolic shape plus the
4th parameter for the average signal strength. The image size is
100 × 100 points, and the true number of patterns is 3, which is
not known. Therefore, at least 4 patterns should be fit to the data,
to decide that 3 patterns fit best. Fitting 4× 4 = 16 parameters to
100 × 100 grid by a brute-force testing would take about 1040 to
1042 operations, still a prohibitive computational complexity.
The models and conditional similarities for this case are

described in detail in Linnehan et al. (2003): a uniform model for
noise, Gaussian blobs for highly fuzzy, poorly resolved patterns,
and parabolic models for the patterns of interest. The number
of computer operations in this example was about 109. Thus, a
problem that was not solvable due to CC becomes solvable using
dynamic logic.
In this example dynamic logic performs better than the human

visual system. This is understood due to the fact that the human
visual system is optimized for different type of images, not for
parabolic shapes in noise.
An ability of dynamic logic to extract signals from strong

noise and clutter was used in many applications; we would
mention here an application to EEG signals (Kozma, Deming,
Perlovsky, Levine, & Perlovsky, 2007). Potentially, EEG signals
contain information about brain cognitive events; detecting these
signals and estimating their parameters could be utilized to allow
quadriplegics tomove a computer cursor or steer theirwheelchairs
with their thoughts; or those playing computer games could
control actions on the screen with their thoughts. The difficulty
is that EEG signals are notoriously noisy. The referenced article
describes a dynamic logic algorithm for extracting cognitively
related events from EEG.
















