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Conundrum of Combinatorial Complexity

Leonid I. Perlovsky, Senior Member, IEEE

Abstract—This paper examines fundamental problems underlying
difficulties encountered by pattern recognition algorithms, neural
networks, and rule systems. These problems are manifested as
combinatorial complexity of algorithms, of their computational or
training requirements. The paper relates particular types of complexity
problems to the roles of a priori knowledge and adaptive learning.
Paradigms based on adaptive learning lead to the complexity of
training procedures, while nonadaptive rule-based paradigms lead to
complexity of rule systems. Model-based approaches to combining
adaptivity with a priori knowledge lead to computational complexity.
Arguments are presented for the Aristotelian logic being culpable for the
difficulty of combining adaptivity and a priority. The potential role of the
fuzzy logic in overcoming current difficulties is discussed. Current
mathematical difficulties are related to philosophical debates of the past.

Index Terms—Pattern recognition, neural networks, rule systems,
complexity, training, learning, a priori knowledge, fuzzy logic,
Aristotelian logic

————————   F   ————————

1 INTRODUCTION

RECOGNITION of complex patterns has met with difficulties that are
often expressed in terms of the complexity of a recognition proc-
ess. Various recognition paradigms have their own sets of difficul-
ties, but it seems that there always is a step in the recognition pro-
cess that is exponentially or combinatorially complex. A well-
known term used in this regard is “the curse of dimensionality”
[4]. This designates a phenomenon of exponential (or combinato-
rial) increase in the required number of training samples with the
increase of the dimensionality of a pattern recognition problem.
The curse of dimensionality is characteristic of adaptive algo-
rithms and neural networks.

Another set of difficulties is encountered by those approaches to
the problem of recognition that utilize systems of a priori rules. In the
case of rule systems, the difficulty is in a fast (combinatorial) growth of
the number of rules with the complexity of the problem [48]. Model-
based approaches that utilize object models in the recognition process
encounter difficulties manifested as combinatorial complexity of re-
quired computations [7], [15], [32]. The difficulties of various pattern
recognition paradigms have been summarized in recent reviews as
follows. “Much of our current models and methodologies do not seem
to scale out of limited ‘toy’ domains” [31]. The key issue is the “com-
binatorial explosion inherent in the problem” [16].

The seemingly inexorable combinatorial explosion that reincar-
nates in every pattern recognition paradigm is related in this paper
to a fundamental issue of the roles of a priori knowledge vs. adap-
tive learning. This relationship has been discussed recently for
geometric patterns and for function approximation [14], [36]. The
issue of the roles of a priori knowledge vs. adaptive learning has
been of an overriding concern in the research of mathematics of
intelligence since its inception. In fact, the controversy about a
priori knowledge and learning can be traced throughout the entire
history of the concepts of mind throughout the Middle Ages to
Aristotle and Plato. The philosophical thoughts of the past turn
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out to be directly relevant to the development of mathematical
concepts of intellect today. Section 2 discusses mathematical diffi-
culties of relying exclusively on adaptive learning or on a priori
knowledge. Then, Section 2 turns to difficulties of combining a
priority with adaptivity. Section 3 presents a brief discussion of
interrelationships between philosophical concepts of intellect and
mathematical concepts of pattern recognition. Possible future di-
rections are discussed in Section 4.

2 COMPUTATIONAL CONCEPTS

A contemporary direction in the theory of intellect based on modeling
neural structures of the brain was founded by McCulloch and his
coworkers [24]. In search of a mathematical theory unifying neural
and cognitive processes, they combined an empirical analysis of bio-
logical neurons with the theory of information and mathematically
formulated the main properties of neurons. McCulloch believed that
the material basis of the mind is in complicated neural structures of a
priori origin. Specialized, genetically inherited a priori structures have
to provide for specific types of learning and adaptation abilities. An
example of such a structure investigated by McCulloch was a group-
averaging structure providing for scale-independent recognition of
objects, which McCulloch believed serves as a material basis for con-
cepts or ideas of objects independent of their apparent size [38].

However, this investigation into the a priori aspect of the intel-
lect was not continued during the neural network research in
1950s and 1960s, and neural networks developed at that time util-
ized simple structures. These neural networks were based on the
concept of general, nonspecific adaptive learning using concrete
empirical data.1 By emphasizing the adaptive aspect of intellect
and neglecting its a priori aspect, this approach deviated from the
program outlined by McCulloch. Simple structures of early neural
networks and learning based entirely on the concrete empirical
data were in agreement with behaviorist psychology dominant at
the time. When the fundamental, mathematical character of lim-
ited capabilities of perceptrons was analyzed by Minsky and Pa-
pert [30], interest in the field of neural networks fell sharply.

Concurrent with early neural networks, adaptive algorithms for
pattern recognition have been developed based on statistical tech-
niques and the concept of classification space [12], [13], [33], [44].
In order to recognize objects (patterns) using these methods, the
objects are characterized by a set of classification features that are
designed based on a preliminary analysis of a problem and thus
contain a priori information needed for a solution of this type of
problem. Application of statistical pattern recognition methods has
been limited by the fact that general mathematical methods for the
design of classification features have not been developed. Design
of classification features is based on a priori knowledge of specific
problems and remains an art requiring human participation. When
a problem complexity is not reduced to a few classification fea-
tures in a preliminary analysis, these approaches lead to difficul-
ties related to exorbitant training requirements.

The exorbitant training requirements of statistical pattern recog-
nition algorithms can be understood due to the geometry of high-
dimensional classification spaces. There are three basic approaches
used to partition a classification space among classes: discriminating
surfaces, nearest neighbors, and model-based parametric estimation
[36]. Early parametric methods based on relatively simple probabil-

1. This statement should be further qualified. Widrow’s (1959)
Adaline neural network was based on the a priori cybernetic signal
model (Wiener filter). For the problems of linear signal filtering,
Adaline adaptation is efficient, that is, it learns as fast as theoretically
possible. However, Adaline’s internal model was relatively simple, and
it seemed that Adaline was in line with the dominant philosophy at the
time that emphasized self-learning and ignored complicated a priori
knowledge. See further discussions in Sections 3 and 4.

istic models such as Gaussian distributions were limited to simple
classifier shapes (such as the quadratic classifier). Nonparametric
paradigms (discriminating surfaces and nearest neighbors) have
been used to surpass the limitations of simple parametric methods.
However, due to the fact that the volume of a classification space
grows exponentially with the dimensionality (number of features),
training requirements for nonparametric paradigms are often expo-
nential in terms of the problem complexity [36]. This is essentially
the same problem that was encountered earlier in the field of adap-
tive control and was named “the curse of dimensionality” [4]. The
father of cybernetics, Wiener, also saw this problem. He pointed out
that using higher-order predictive models, or combining many sim-
ple models, is inadequate for the description of complex nonstation-
ary systems, because of insufficient data for learning [47].

Facing exorbitant training requirements of statistical pattern
recognition algorithms and being dissatisfied with limited capa-
bilities of mathematical methods of modeling neural networks,
which existed at the time, Minsky suggested a different concept of
artificial intelligence based on the principle of a priority. He ar-
gued that intelligence could only be understood on the basis of
extensive systems of a priori rules [28]. This was the next attempt
(after McCulloch) to understand the intellect from the principle of
a priority. The main advantage of this method is that it requires no
training, because it explicitly incorporates detailed, high-level, a
priori knowledge into the decision making. This knowledge is
represented in a symbolic form similar to high-level cognitive con-
cepts utilized by a human in conscious decision-making processes.

The main drawback of this method is the difficulty of combin-
ing rule systems with adaptive learning; while modeling the a
priori aspect of the intellect, rule-based systems were lacking in
adaptivity. Minsky emphasized that his method does not solve the
problem of learning [29], notwithstanding attempts to add learn-
ing to rule-based artificial intelligence that continued in various
fields of modeling the mind, including linguistics and pattern rec-
ognition [5], [6], [20], [21], [48]. In linguistics, Chomsky has pro-
posed to build a self-learning system that could learn a language
similarly to a human, using a symbolic mathematics of rule sys-
tems [10]. In Chomsky's approach, the learning of a language is
based on a language faculty, which is a genetically inherited com-
ponent of the mind, containing an a priori knowledge of language.
This direction in linguistics, named the Chomskyan Revolution,
was about recognizing the two questions about the intellect: first,
how is it possible? and second, how is learning possible? as the
center of a linguistic inquiry and of a mathematical theory of mind
[6]. However, combining adaptive learning with a priori knowl-
edge proved difficult: Variabilities and uncertainties in data re-
quired more and more detailed rules, leading to combinatorial
complexity of logical inference [48].

Model-based approaches in machine vision have been used to
extend the rule-based concept to 2D and 3D sensory data. Use of
physically based models permits utilization of detailed a priori in-
formation on objects’ properties and shape in algorithms of image
recognition and understanding [5], [7], [8], [9], [15], [20], [22], [27],
[31], [41], [48]. Models used in machine vision typically are compli-
cated geometrical 3D models that require no adaptation. These
models are useful in applications where variabilities are limited and
types of objects and other parameters of the recognition problem are
constrained. When unforeseen variabilities are a constant factor in
the recognition problem, utilization of such models faces difficulties
that are common to rule-based systems. More and more detailed
models are required, potentially leading to a combinatorial explosion.

Parametric model-based approaches have been proposed to
overcome the difficulties of previously used methods and to com-
bine the adaptivity of parameters with a priority of models. In
these approaches, adaptive parameters are used to adapt models
to variabilities and uncertainties in data. Parametric adaptive
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methods date back to Widrow’s Adaline and linear classifiers.
These early parametric methods can be efficiently trained using
few samples, however, they are limited to simple decision regions
and are not suitable for many complicated problems. Complicated
problems, such as image recognition, require utilization of multi-
ple flexible models. In the process of recognition, an algorithm has
to decide which subset of data corresponds to which model. This
step is called segmentation, or association, and it requires a con-
sideration of multiple combinations of subsets of the data. Because of
this, complicated adaptive models often lead to combinatorial
explosion of the complexity of the recognition process.

A mathematical analysis of existing approaches to the design of
systems and algorithms of mathematical intelligence leads to the con-
clusion that computational concepts of most of today’s neural net-
works originate in pattern recognition algorithms, and that there are
four basic concepts forming the foundation for all the multiplicity of
existing algorithms and neural networks [35], [36], [37]. These are

1)� the concept of rule-based systems [28], defined by the factor
of a priority;

2)� the concept of nearest neighbors and
3)� the concept of discriminating surfaces, both defined by the

factor of adaptivity [12], [33]; and
4)� the concept of parametric models [41], [48], that attempts to

combine a priority and adaptivity.

While methods based on adaptivity face combinatorial explosion of
the training process, those based on a priority face combinatorial ex-
plosion of the complexity of rule systems, and attempts to combine the
two face combinatorial explosion of the computational complexity.
Factors of a priority and adaptivity ought to be combined by physi-
cally acceptable concepts of the intellect. Therefore, approaches to
combining both factors are of paramount interest. However, existing
approaches to this problem have not resolved the conundrum of
combinatorial complexity. To repeat, “Much of our current models
and methodologies do not seem to scale out of limited ‘toy’ do-
mains” [31]; “The key issues (are) ... the inherent uncertainty of data
measurements” and “combinatorial explosion inherent in the prob-
lem” [16].

3 MATHEMATICS AND PHILOSOPHY

The problem of combining adaptivity and a priority is fundamental
to computational intelligence as well as to understanding human
intelligence. There is an interrelationship among concepts of mind in
mathematics, psychology, and philosophy, which is much closer
than currently thought among scientists and philosophers of today.
From the contemporary point of view, the questions about mind
posed by ancient philosophers are astonishingly scientific. A central
question to the work of Plato, Aristotle, Avicenna, Maimonides,
Aquinas, Occam, and Kant was the question of the origins of univer-
sal concepts. Are we born with a priori knowledge of concepts or do
we acquire this knowledge adaptively by learning from experience?
This question was central to the work of ancient philosophers and
medieval theologists, and it was equally important to theories of
Freud, Jung, and Skinner. The different answers they gave to this
question are very similar to the answers given by McCulloch, Min-
sky, Chomsky, and Grossberg [10], [17], [18], [29], [26].

Plato faced the very first question about the intellect 2,300 years
ago: How is it possible at all? He came to a conclusion that our
ability to think is founded on the fact that concepts or abstract ideas
(Eidos) are known to us a priori, through a mystic connection
with a world of Ideas [39]. This conception of mind based on
realism of ideas did not bode well with a new way of thinking
that had emerged from the medieval scholasticism and was for-
mulated in the 16th century as a scientific method. A forerunner
of the scientific method, Occam, who is considered one of the last
great medieval scholastic thinkers, held nominalistic views [34] that

are opposite to realism. Following Antisthenes, the founder of the
Cynic school of philosophy, nominalism considers ideas to be just
names (nomina) for classes or collections of similar empirical facts.

Time has obscured the influence of Occam on the development of
the scientific method, and his name is hidden behind the figures of
great philosophers and scientists that came after him. However, de-
spite the realism of Descartes, Leibnitz, and Newton, nominalism of
the forerunner of contemporary scientific thinking continues to per-
vade scientific attitudes of today. One of the reasons for the influence
of nominalism is the unbreakable tie between the scientific method
and objectivization of the subject of inquiry. In physics, the theoreti-
cal tradition of Newton's realism counterbalanced the influence of
nominalism, but in the area of empirical sciences, such as psychology
in the last century, the reality of facts seemed more significant than
the reality of ideas that have not been clad in a mathematical form.

Near the end of 19th century, the success of the mathematical
method in physics had advanced a requirement of objectivization
and, in the empirical sciences, where the only criterion of objectiv-
ity was seen in reproducible experiments, the theoretical possibil-
ity of a priori concepts was questioned. A priori concepts started
losing ground, became lowered to the level of (at best) unproved
hypothesis, and it could even be argued that in some areas of sci-
ence, the desire for objectivity inhibited deep theoretical scientific
thinking. Concepts dressed not in the strict language of mathe-
matical computations seemed compromised. In this atmosphere, to
resolve the dilemma between the objectivity and depth of investi-
gation, there was born behaviorism, a new scientific direction re-
defining psychology as a science of human behavior [45] and an
accompanying intellectual and philosophical movement [42].

Emergence of cybernetics proceeded under the influence of the
dominating psychological concept of behaviorism, which can be
seen from the cybernetics’ program paper [40]. The mutual influ-
ence of behaviorism, nominalistic philosophy, and cybernetics was
enhanced by the fact that available cybernetic models were rela-
tively simple linear Wiener filters, suitable for utilization of only
simple a priori knowledge. It was truly revolutionary that despite
the prevailing nominalistic orientation, McCulloch came to a con-
clusion that understanding of mind required the realistic philoso-
phy. He wrote: “under the influence of nominalistic concepts since
Occam, the realistic logic decayed, which caused problems for
scientific understanding of mind” [25], [26]. A realistic philosophy,
created by the school of Plato and Aristotle, McCulloch saw as the
foundation for the search of the material structures of mind. How-
ever, early neural network research in 1950s and 1960s did not
follow this direction and pursued the nominalistic concept of
learning from examples, without using complicated a priori
knowledge, until the demise of behaviorism in 1960s.

Whichever the reasons for the influence of the nominalistic con-
cept, today it still forms the basis for nonparametric algorithms and
neural networks, which do not utilize complicated a priori informa-
tion in the process of learning and adaptation. However, a concerted
research effort toward combining a priori knowledge and learning is
emerging. And today, tracing the relationships between philosophi-
cal and mathematical theories of the intellect and outlining future
research directions, we move away from Occam, who stands near
the roots of scientific objectivization, toward the idealistic realism of
Plato and Aristotle, explaining the possibility of mind by combining
a priority and adaptivity on a realistic basis.

The rule-based systems approach to utilization of extensive a
priori knowledge represents the next (after McCulloch) attempt to
understand intelligence on the basis of realistic philosophy. The
similarity between rule-based systems and Plato's conception of
mind based on a priori ideas [39] has been discussed by Chomsky
[10]. He has directly related the principle of a priority in algorithm
design to the philosophy of realism. He has also hoped that the
problem of learning can be solved using a rule-based approach to
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intelligence. However, the mathematics of rule-based systems is
inadequate for adaptation and learning, which has been emphasized
by the founder of this approach to computational intelligence, Min-
sky [29], and has been later confirmed in multiple attempts to solve
the problem of learning on the basis of rule-based systems [48].
Chomsky came to a similar conclusion, and later he proposed a dif-
ferent approach to the problem of learning based on a priori princi-
ples and adaptive parameters [11], which is similar to parametric
model-based approaches to combining a priority and adaptivity in
pattern recognition. As discussed in the previous section, existing
mathematical methods used for this purpose face combinatorial
computational complexity.

The most striking fact is that the first one who pointed out that
learning cannot be achieved in Plato’s theory of mind was Aris-
totle. Aristotle recognized that in Plato’s formulation, there could
be no learning, since Eide (ideas, or concepts) are given a priori in
their final form. Thus, learning is not needed and is impossible,
and the world of ideas is completely separated from the world of
experience. Seeking to unite the two worlds and to understand
learning, Aristotle developed a concept of Form having a universal
and higher reality and being a formative principle in an individual
experience [1]. In the Aristotelian theory of Form, the adaptivity of
the mind was due to a meeting between the a priori Form and mat-
ter, forming an individual experience. This theory was further de-
veloped by Avicenna [2], Maimonides [23], Aquinas [3], and Kant
[19] among many other philosophers during the last 2,300 years.

4 WHITHER WE GO FROM HERE?
Let us summarize the results of our analysis. The fundamental
issue in pattern recognition and computational intelligence is the
relative role of a priori knowledge and adaptive learning. The
computational intelligence techniques that utilized only one of
these two factors have been limited in their suitability for compli-
cated pattern recognition problems. These limitations have been
manifested in two different ways for the two types of algorithms.
For algorithms based on the factor of adaptivity alone, the limita-
tions have been manifested by the exponential training require-
ments. And, for algorithms based on the factor of a priority alone,
the limitations have been manifested by the exponential explosion
of the complexity of rule systems. In order to surpass these limita-
tions, model-based techniques have been developed for combining
adaptivity and a priority, but they often lead to a combinatorial
explosion of the computational complexity.

The human intellect combines the two factors of a priority and
adaptivity. According to the philosophical analysis dating to Aris-
totle, adaptive learning is based on a priori Forms. In today’s
mathematical language, adaptive parametric models come closest to
the Aristotelian Forms. A meeting between the a priori Form and
matter can be understood as adaptive estimation of model parame-
ters from the data. Thus, a successful approach to pattern recogni-
tion, following human intellect, ought to combine adaptivity and a
priority in a model-based paradigm. However, algorithms that have
been used in the past to combine adaptivity and a priority in a model-
based paradigm lead to exponential computational complexity and
are not suited for this purpose. The answer to the conundrum of com-
binatorial complexity requires understanding of this difficulty.

It seems that Aristotle provided us with the riddle and with the
key to its answer. The major point of Aristotelian criticism of Plato’s
Ideas was that before a Form meets matter, it should be not in its final
form of a concept. But the Aristotelian logic that underlies our algo-
rithms, the Boolean calculus, and calculus of predicates that are
based on Aristotelian logic operate with final forms of concepts. The
same is true about geometrical models of model-based paradigms. It
is the need to consider multiple combinations or associations be-
tween the concepts and the material world (signals, images) in the

process of recognition that leads to the combinatorial explosion. The
answer to the conundrum of combinatorial complexity should be
sought in overcoming the Aristotelian logic that underlies our algo-
rithms. Fuzzy and probabilistic logics [49] may hold keys to the
answer. Intermediate computational steps (before Forms meet mat-
ter) should employ fuzzy representations of concepts. Neural net-
works with their inherent capability for fuzzy logic at the intermedi-
ate computational steps emerge as a vehicle for this new computa-
tional concept. Existing neural networks, however, lack the capabil-
ity for representing complicated a priori knowledge. Current ap-
proaches to combining neural and symbolic processing do so by
eclectic means of combining the old computational concepts in hy-
brid systems, while “new computational concepts are needed” [43].
Thus, pattern recognition research should be looking for a nexus of
model-based and neural network concepts. How could this Aristo-
telian mathematics of mind be achieved? It seems that the future
mathematics of mind will utilize complicated a priori Forms repre-
sented as fuzzy spatiotemporal models in a neural architecture. A
dynamical spatiotemporal model combining spatial information
representation and temporal processing can be called a neural mod-
eling field. Such a system will evolve by learning from external
stimuli based on a priori models, becoming a paradigm of the Aris-
totelian mathematics of mind.
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