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Abstract—We have developed an efficient algorithm for the maximum likelihood joint tracking and 

association problem in a strong clutter for GMTI data. The new tracker overcomes combinatorial 
complexity of tracking in highly-cluttered scenarios and results in about 20 dB (two orders of 
magnitude) improvement in signal-to-clutter ratio.  
 

Index Terms—Combinatorial Complexity, Ground Moving Target Indicator Radar, Tracking, 
Association, Clutter. 

I. INTRODUCTION 
Performance of the state-of-the-art algorithms for tracking and association in strong clutter

[1], as a function of Signal-to-Clutter Ratio (SCR), is significantly below the information-theoretic limit as 
indicated by the Cramer-Rao Bound (CRB) for tracking in clutter [2]. The reason for this underperformance 
is combinatorial complexity of algorithms. When clutter is strong, so that signals are below clutter, 
multiple associations between data and tracks have to be considered. The number of associations grows 
combinatorially with the number of data points. Therefore performance is limited by complexity of 
computations rather than by information in the data. Here we describe a non-combinatorial solution of the 
maximum likelihood joint tracking and association problem resulting in a significantly improved 
performance; it follows a discussion at [3]. 

Standard algorithms (such as Multiple Hypotheses Testing, MHT [4]) used in the current GMTI detection 
and tracking subsystems operate in a two-step process. First, Doppler peaks are detected that exceed a 
predetermined threshold. Second, these potential target peaks are used to initiate tracks. This two-step 
procedure is a state-of-the-art approach which is currently used by most tracking systems. The limitation of 
this procedure is determined by the detection threshold. If the threshold is reduced, the number of detected 
peaks grows quickly. Increased computer power does not help because the processing requirements are 
combinatorial in terms of the number of peaks, so that a tenfold increase in the number of peaks results in a 
billion fold increase in the required computer power. 

 

I. LIKELIHOOD FOR JOINT TRACKING AND ASSOCIATION  
 

Consider k GMTI radar scans, resulting in n = 1… N measurements X(n) = (xn, yn, an, Dn), where (xn, yn) 
are range and cross-range positions, an, is amplitude and Dn is Doppler. A likelihood of error measurement, 
e(n), is defined as follows. Error measurements are considered independent, therefore, 

 
L({e(n)}) =  pdf(e(n)).  (1) ∏

∈Nn
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A pdf(e(n)) is defined according to multiple hypotheses (note a difference in terminology, in MHT 
algorithm a hypothesis is every association between data and track; we call a hypothesis a track or clutter 
with unknown parameters). The measurement X(n) can originate from clutter, or from one of several 
moving objects. We number hypotheses h = 1…H; h=1 corresponds to clutter, h = 2…H correspond to H-1 
tracks, 
 
pdf(e(n)) =  r(h) pdf(e(n)|h),  (2) ∑

∈Hh

 
where r(h) is an a priori probability that measurement n originates according to hypothesis h, and 
pdf(e(n)|h) is a conditional pdf for this hypothesis. Substituting eq.(2) into eq.(1), we obtain 
 
L({e(n)}) =  r(h) pdf(e(n)|h). (3) ∏

∈Nn
∑
∈Hh

  
This product of sums contains HN items, corresponding to all combinations of data and tracks or clutter 
(every data point could have originated according to any hypotheses). This huge number is the reason for 
combinatorial complexity of algorithms in the past. The above notation for conditional pdfs is a shorthand 
for pdf(e(n)| Mh(n)), where Mh(n) is a model predicting measurement X(n); if this measurement originates 
according to hypothesis h, then Mh(n) is an expected value of this measurement (when true parameter 
values are used), 
 
Mh(n) = E{X(n)|h}, (4) 
 
and   
  
e(n,h) = X(n) - Mh(n).  (5) 
 
We consider tracking short track segments, tracklets, along which velocities can be considered constant Vh 
= (Vhx , Vhy). Correspondingly, the complete model is 
 
Mh(Sh,n) = (X0h+Vhxtn, Y0h+Vhytn, ah, Dh).  (6) 
 
Here parameters of the model, Sh = (X0h, Y0h, Vhx, Vhy, ah, Dh); (X0h, Y0h) model an original position, 
(Vhx, Vhy) model velocity, (ah, Dh) model amplitude and Doppler; tn, is the known time counted from the 
first scan. Also, 
 
Vhx = Dh.  (7) 
 
The unknown parameters also include r(h), parameters of conditional pdf, such as standard deviations or 
covariances, and the total number of track-models. Conditional pdf for clutter we define as uniform, 
 
pdf(X(n)|1) = 1/par_volume, (8) 
 
where par_volume is a volume of the parameter space, a product of (Smax – Smin) for all parameters. 
Conditional pdfs of tracks are defined as Gaussian; in view of hard boundaries Smax, Smin, this is an 
approximation; also parameters ah are not likely to follow Gaussian distributions. In our practical cases this 
approximate treatment has been sufficient,   
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pdf(e(n,h)|h) =  (2π)-2(det Ch)

 -0.5 

               ·  exp{-0.5 e(n,h)TCh
-1 e(n,h)}.        (9) 

 
We use diagonal covariance matrixes Ch = diag(σxh

2,σyh
2,σah

2,σDh
2); and, σxh

2 = σDh
2.  

 

II. DYNAMIC LOGIC 
 

Now we describe a procedure to maximize the likelihood (1) while at the same time solving the 
association-assignment problem without combinatorial complexity. We call this procedure dynamic logic 
(DL) for reasons described in [5], [6]. It is similar to a procedure described in [7]; that publication also has 
given a detailed review of relationships of this technique to previous related publications, which we briefly 
summarize here. A fundamental idea of probabilistic association has originated from Bar-Shalom [8].  The 
general framework for the approach described in this paper was developed by Perlovsky in [9], [10], [11], 
[12], [13], [14], [15] and other publications listed in [15]. Perlovsky’s DL tracker has much in common with a 
similar algorithm known as the probabilistic multihypothesis tracker (PMHT) [16], [17], [18] which was 
developed independently by Streit and Luginbuhl, and shares strong similarities with Avitzour’s approach 
[19]. When applied to a benchmark multi-target tracking problem, it was found that the computational cost 
of PMHT has roughly the same order of magnitude as the cost of MHT and JPDAF [20] (combinatorial). 
The computational cost of the DL tracker scales only linearly with increasing numbers of data. The main 
idea of the DL procedure, which resulted in reduced computational complexity from combinatorial to 
linear, is coordination of the certainty of model parameters and certainty of assignment-associations as 
discussed later. 

DL is an iterative procedure, which starts with unknown values of model parameters and 
correspondingly large uncertainty of associations; this later requirement is achieved by setting standard 
deviation of parameters equal to one half of (max – min) value for this parameters (which are usually 
approximately known in an operation scenario). Taking these initial values of parameters, conditional 
probabilities eq.(9) are computed. Then association variables are computed; they are defined similarly to 
posteriori Bayes probabilities (for shortness, we use indexes n, h instead of the corresponding data X(n) 
and models Mh(n). 
 
f(h|n) = r(h) pdf(n|h) / r(h') pdf (n|h'). (10) 

h '∈H
∑

 
Although eq.(10) looks like posteriori Bayes probabilities, f(h|n) are not probabilities, since parameter 
values are incorrect; they can be called association variables or estimated probabilities of measurements n 
originating from tracks (objects or hypotheses) h.  

The next step is to estimate parameters, using these estimated association probabilities. The following 
equations are used for r(h),  

 
r(h) = f(h|n)/N. (11) ∑

∈Nn

 
This gives an estimated average ratio of data points assigned to track h (or clutter h=1) to the total number 
of data points N. This and other parameter estimation equations look simpler with the following notation: 

 
<...>h = f(h|n) (...)∑

∈Nn
n. (12) 
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Then eq.(11) can be rewritten as 
 

r(h) = < 1 >h / N. (13) 
 
Other parameter estimation equations, at each iteration, are computed as 
 

 ah =  < an >h.   (14) 
 
 Y0h< 1 >h + Vyh < tn >h  =  < Yn >h,   
 Y0h < tn >h + Vyh < tn

2>h  =  < Yn tn >h. (15) 
  
X0h< 1 >h + Vxh < tn >  =  < Xh 
X0

n >h,  
h< tn >h + Vxh ( < tn

2>h  + c < 1 > ) = 
                     = < Xn tn >h + c < Dn > h.  (16) 
 
 

Here, c = σxh
2 / σDh

2. For the unknown parameters, Y0h and Vyh, eq.(15) is a two-dimensional linear system 
of equations; similarly eq.(16) is a two-dimensional linear system of equations for X0h and Vxh. Standard 
deviations for each parameter s are estimated, as follows:  

 
σhs

2   = < (Xs(n)- Mhs(n))2
 >h (17) 

 
DL consists in iterative computations of eqs.(10) through (17). While estimated parameters are far from 
true values, models do not match data, standard deviations are large, and associations f(h|n) are “flat”: 
small numbers for many combinations of n and h (including incorrect ones), any data point has a nonzero 
assignment to any track (or clutter). Nevertheless, even with these poor initial associations, parameter 
values improve on every iteration according to a theorem proven in [15]: Likelihood (1) grows on every 
iteration and the DL procedure converges (local vs. global convergence is discussed below). As parameter 
values converge close to their true values, standard deviations converge to small values close to the sensor 
errors. Association variables converge close to true probabilities, close to 1 for n and h pairs corresponding 
to data n originating from object h, and to 0 otherwise (this last statement is true to the extent that the 
information contained in the data is sufficient for track separability and data association). This DL process 
from vague to crisp associations is characteristic of DL [15]. 

The computational complexity of the DL procedure described above is proportional to the number of data 
points and the number of tracks, const*N*H. The const here accounts for the number of iterations, and for 
complexity of procedures described by (10) through (17). Typical numbers are discussed in the next 
section. The principal theoretical moment is that this number is linear in N and in H, rather than 
combinatorial, ~HN like in MHT. 

The number of tracks is estimated as follows. The algorithm starts with 1 active track model, which 
parameters are updated from iteration to iteration. In addition, the algorithm keeps one (or several) dormant 
track, which parameters are not updated, except for r(h). On the 1st iteration all standard deviations are 
large and the track and clutter models have low but nonzero associations to all data points. After few 
iterations the active track standard deviations become smaller, it is stronger associated with some returns 
and weaker with others. According to eq.(11), sum total associations of every data point n, Σhf(h|n) = 1; 
therefore some associations for dormant tracks grow. After r(h) for a dormant track exceeds a 
predetermined threshold, this track is activated and its parameters are updated. Similarly, if r(h) falls below 
the threshold, the track is eliminated. In this way as many tracks are activated as justified by the data. This 
procedure may lead to too many active tracks. When standard deviations approach sensor error values and 
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association variables approach 0s and 1s, extra tracks tend to converge either on top of each other, or to one 
or two data points, these are pruned. Upon convergence (likelihood eq.(1) increase between iterations 
become less than a threshold), a detection measures is computed for each track; it is defined as a local log-
likelihood ratio computed using returns within two standard deviations {n’} of each track:  

 
LLR(h) = [ ln pdf(n'|h) - ln pdf(n'|1) ]. (18) ∑

∈ '' Nn

 
Tracks with LLR(h) exceeding a predetermined threshold are declared detections. 
Convergence of this iterative procedure to a local maximum of similarity measure (1), as mentioned, was 

proven in [15]. Such local convergence usually occurs within relatively few iterations; a typical example in 
the next section took 20 iterations. Since similarity is a highly non-linear function, regular convergence to 
the global maximum can not be expected. The local rather than global convergence sometimes presents an 
irresolvable difficulty in many applications. In the presented method, this problem is resolved in several 
ways. First, the large initial standard deviation of the similarity measure smoothes local maxima. Second, 
tracks are pruned and activated as needed. Therefore if a particular real track is not “captured” after few 
iterations, it will be captured at a later iteration, after a track-model activation. Third, if a spurious track is 
declared detected, or a real track is missed, these errors will be self-corrected at a later stage of a system 
operation, when detected track segments or tracklets are connected into longer tracks (system operation 
procedures are beyond the current communication).  

 

III. TRACKING EXAMPLE AND ROC 
 

An application example of the above described DL tracker is illustrated in Fig. 1, where detection and 
tracking are performed for targets below the clutter level.  Fig. 1(a) shows true track positions in a 0.5km * 
0.5km data set, while Fig. 1(b) shows the actual data available for detection and tracking.  In this data, the 
target returns are buried in the clutter, with signal-to-clutter ratio of about –2dB for amplitude and –3dB for 
Doppler.  Here, the data are displayed such that all six revisit scans are shown superimposed in the 0.5km * 
0.5km area, 500 pre-detected signals per scan, and the brightness of each data sample is proportional to its 
measured Doppler value. Figs. 1(c)-1(h) illustrate the dynamics of the algorithm as it adapts during 
increasing iterations; the brightness is proportional to association variables, which for this display purpose 
are computed not just for X(n) but for all pixels (resulting in a smooth image shape). Only association 
variables for active track models are shown. Fig. 1(c) shows the initial vague track-model, and Fig. 1(h) 
shows track-models upon convergence at 20 iterations. Between (c) and (h) the DL tracker automatically 
decides how many track-models are needed to fit the data, and simultaneously updates the track parameters 
and association variables. There are two types of models: one uniform model describing clutter (it is not 
shown), and linear track-models, which uncertainty changes from large (c) to small (h). In (c) and (d), the 
DL tracker fits the data with one model, and uncertainty is somewhat reduced. Between (d) and (e) the DL 
tracker uses more than one track-model and decides that it needs two models to ‘understand’ the content of 
the data. Fitting with 2 tracks continues until (f); between (f) and (g) a third track is added. Iterations stop 
at (h), when similarity stops increasing. Detected tracks closely correspond to the truth (a).  

 
FIG.1 GOES HERE 
 

Fig. 1. Detection and tracking three targets in clutter using DL:  (a) true track positions in 0.5km * 
0.5km data set;  (b) actual data available for detection and tracking.  DL iterations are illustrated in (c) – 
(h), where (c) shows the initial, uncertain model and (h) shows the models upon convergence after 20 
iterations.  Note the close agreement between the converged models (h) and the truth (a). 
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In this example, target signals are below clutter. A single scan does not contain enough information for 

detection. Detection should be performed concurrently with tracking, using several radar scans, and six 
scans are used. In this case, a standard multiple hypothesis tracking, evaluating all tracking association 
hypothesis, would require about 105000 operations, a number too large for computation. Therefore, existing 
tracking systems require strong signals, with about a 15 db signal-to-clutter ratio [1]. DL successfully 
detected and tracked all three targets and required only 106 operations, achieving about 18 dB improvement 
in signal-to-clutter sensitivity.  

A detailed characterization of performance requires operating curves (ROC), plots of probability of 
detection vs. probability of false alarm, computed for various signal-to-clutter ratios, densities of targets, 
target velocities, and other scenario parameters. Such detailed characterization is beyond the scope of this 
communication. Instead, Fig.2 illustrates three ROCs for selected parameter values. 

 
. 

 
 
Fig. 2. Three ROC curves for different clutter levels: 50, 100, and 200 pre-detected signals per frame. 8 

frames are used (total of 400, 800, and 1600 clutter signals per 8 target signals). Signal to clutter ratio, S/C, 
is defined as a signal strength divided by standard deviations taken as a sum of clutter and target standard 
deviations: S/C = [(σC + σT)]. S/C is 1.7 for amplitude and 2.0 for Doppler. 

 
 

IV. CONCLUSION 
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The paper presented a maximum likelihood solution for tracking in clutter, while avoiding combinatorial 
complexity. 

Future research will include feature-added tracking when - in addition to amplitude, position, and 
velocity - other characteristics of received signals are also used for improved associations between signals 
and track models. DL can naturally incorporate this additional information. Since association neural 
weights in DL are functions of object models (1) any object feature can be included into the models and 
will be used for signal-model associations. 

Other sources of information can be included. For example, coordinates of roads can be easily 
incorporated into the DL procedure. For this purpose road positions should be characterized by a 
probability density, depending on the known coordinates and expected errors. Then similarities (2) can be 
modified by multiplying them by the probability densities of roads.  
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FIGURE CAPTIONS 
 
 
 
 
 
 
Fig. 1. Detection and tracking three targets in clutter using DL:  (a) true track positions in 0.5km * 

0.5km data set;  (b) actual data available for detection and tracking.  DL iterations are illustrated in (c) – 
(h), where (c) shows the initial, uncertain model and (h) shows the models upon convergence after 20 
iterations.  Note the close agreement between the converged models (h) and the truth (a). 

 
 
 
 
 
 
 
Fig. 2. Three ROC curves for different clutter levels: 50, 100, and 200 pre-detected signals per frame. 8 

frames are used (total of 400, 800, and 1600 clutter signals per 8 target signals). Signal to clutter ratio, S/C, 
is defined as a signal strength divided by standard deviations taken as a sum of clutter and target standard 
deviations: S/C = [(σC + σT)]. S/C is 1.7 for amplitude and 2.0 for Doppler. 
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