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Abstract. Computer programming of complex systems is a time consuming effort. 
Results are often brittle and inflexible. Evolving, self-learning flexible multi-agent 
systems remain a distant goal. This paper analyzes difficulties toward developing 
evolving systems and proposes new solutions. The new solutions are inspired by our 
knowledge of the human mind. The mind develops language and cognitive abilities 
jointly. Real-time sensor signals and language signals are integrated seamlessly, 
before signals are understood, at pre-conceptual level. Learning of conceptual 
contents of the surrounding world depends on language and vice versa. This ability 
for integrated communication and cognition is a foundation for evolving systems. 
The paper describes a mathematical technique for such integration: fuzzy dynamic 
logic and dual cognitive-language models. We briefly discuss relationships between 
the proposed mathematical technique, working of the mind, applications to 
understanding-based search engines and evolving multi-agent systems. 
 

 
1  Cultural Evolution: Computers Vs. Nature 

 
Computer capabilities for communication and cognition currently are developed 

separately, usually in different organizations. The nature does it differently. A child 
develops both capabilities jointly. We do not know if it is possible to code computers 
to be ‘cognitive’ or ‘language capable’, one capability separately from the other. 
Current engineering approaches could be invalid in principle. These considerations 
are prime motivations for this paper. Let us examine them in some details. Evolution 
of the human mind from pre-human ancestors occurred in three stages: genetic 
evolution, cultural evolution, and learning along with ontological development of an 
individual child into an adult. Cultural evolution and cognitive learning are much 
faster than genetic evolution. This paper concentrates on the mechanisms of cultural 
evolution and learning.  

As physical infrastructure for communication systems and the Internet matures, 
the information services are gaining in importance. Distributed integration of sensor 
signals with flexible communications, with data and text data bases would be 
necessary for the future Sensor web, an integrated operation of multiple users and 
agents using sensors and communications. However, computer systems today use 
inflexible models and ontologies. Communication systems use fixed protocols. 
Contents of communications are intended for human understanding, computers do not 
understand contents.  

Practical implementations of complex multi-agent systems with communication 
and cognitive abilities are based on detailed models and protocols. These systems 
lack the flexibility of human cognition and natural languages. They integrate signals 
from sensors and communication messages only at high cognitive levels of logical 
predicates. First, information has to be extracted from sensor signals and formulated 



 
 

 

as logical statements at the appropriately high level of abstraction. Similar language 
or communication messages have to be pre-processed, the relevant data extracted and 
formulated as logical statements at a similar level of abstraction. Integration rely on 
models, ontologies, and protocols, which assume shared knowledge and 
understanding [1]. In practice, structures of these models have to be fixed. This is also 
true for ontologies being developed for semantic web. They are not as flexible as 
“shared knowledge” necessary for understanding among people. Specific 
mathematical reason for this inflexibility we discuss in section 2. The resulting 
systems are brittle. As requirements and hardware are changing, they become 
obsolete.  

Contrary to the brittleness of artificial fusion systems, the human mind improves 
with experience. We discuss in this paper that learning, adaptive, and self-evolving 
capabilities of the mind are closely related to the ability to integrate signals 
subliminally. For example, during everyday conversations, human eye gaze as well as 
visual processing stream and the type of conceptual information extracted from the 
surrounding world are affected by contents of speech, even before it is fully 
processed and conceptually analyzed. Similarly, speech perception is affected by 
concurrent cognitive processing. To some extent, we see, what we expect to see; 
verbal preconditioning affects cognition, and vice versa. This close, pre-conceptual 
integration of language and cognition is important not only in real-time perception 
and cognition, but also in ontogenesis, during child growing up, as well as in 
evolution of culture and language. Concepts used by individual minds evolve over 
generations in interaction among multiple agent-minds. As we attempt to develop 
intelligent systems, these lessons from biological systems and their evolution should 
be taken into account. 

Developing integrated systems with language and cognition abilities might seem 
premature. Even considered separately, these problems are very complex and far from 
being solved. Our systems for recognition, tracking, and fusion using sensor data 
often fall far short of human abilities. Similarly, our computer communication 
systems lack flexibility of language. Natural language understanding remains a 
distant goal. Let me repeat that the only way two computers can communicate at all, 
is due to fixed protocols. Communications among computers are intended for human 
users. Computers do not understand contents of communication messages, except 
within narrow domains. Everyone knows frustration of searching information on the 
Internet; Google and Yahoo do not understand our language. But, why should we 
hope to achieve progress in fusing two capabilities, neither of which is at hand?  

The answer was given at the beginning of the paper. The only system that we 
know capable of human level cognition and communication is the human mind. An 
individual human mind develops both capabilities in ontogenesis, during childhood, 
jointly. This is opposite to current engineering approaches, which attempt to develop 
these capabilities separately, usually in different scientific and engineering 
organizations. It is quite possible that coding a computer to acquire language and 
cognitive abilities similarly to the human ways is an ‘easier’ task, possibly, the only 
way to go. We do not even know if it is possible to code computers to be ‘cognitive’ 
or ‘language capable’, one capability separately from the other. These current 
approaches could be invalid in principle.  

A similar argument is applicable to the ‘initial’ computer code, which we would 
like to be similar to inborn child’s capabilities, enabling joint learning of language 



 
 

 

and cognition. Human evolved this capability over at least two million years. It is 
possible, that simulating an accelerated evolution is an ‘easier’ scientific and 
engineering approach, than ‘direct coding’ into a computer of the current state of 
human baby mind. Moreover, we do not need to have to simulate evolution of 
culture; computers may learn from humans in collaborative human-computer 
environment. Therefore, along with smart heuristic solutions, we should try to 
uncover natural mechanisms of evolving language and culture, and to develop 
mathematical descriptions for these processes. 

Scientific understanding of relationships between language and cognition in the 
past went through several reversals. Close relationships between language and 
cognition encouraged equating these abilities in the past. Rule-based systems and 
mathematics of logic implied significant similarities between the two: Thoughts, 
words, and phrases, all are logical statements. The situation has changed, in part due 
to the fact that logic-rule systems have not been sufficiently powerful to explain 
cognition, nor language abilities, and in part due to improved scientific understanding 
(psychological, cognitive, neural, linguistic) of the mechanisms involved. Many 
contemporary linguists consider language and cognition to be distinct and different 
abilities of the mind [see2 for further references].  

Language mechanisms of our mind include abilities to acquire a large vocabulary, 
rules of grammar, and to use the finite set of words and rules to generate virtually 
infinite number of phrases and sentences [3,4]. Cognition includes abilities to 
understand the surrounding world in terms of objects, their relationships (scenes and 
situations), relationships among relationships, and so on [5]. Researchers in 
computational linguistics, mathematics of intelligence and neural networks, cognitive 
science, neuro-physiology and psychology during the last twenty years significantly 
advanced understanding of the mechanisms of the mind involved in learning and 
using language, mechanisms of perception and cognition [3,4,5,6,7,8]. Much less 
advance was achieved toward deciphering mechanisms relating linguistic competence 
to cognition and understanding the world. Although it seems clear that language and 
cognition are closely related abilities, intertwined in evolution, ontogenesis, and 
everyday use, still the currently understood mechanisms of language are mainly 
limited to relations of words to other words and phrases, but not to the objects in the 
surrounding world, not to cognition and thinking. Possible mathematical approaches 
toward integrating language and cognition, words and objects, phrases and situations 
are discussed in this paper. This might be a foundation for cognitive learning and 
mechanisms of cultural evolution. 

The paper starts with a mathematical description of cognition, which still is an 
issue of much controversy. Among researchers in mathematical intelligence it has 
become appreciated, especially during the last decades that cognition is not just a 
chain of logical inferences [5,8]. Yet, mathematical methods describing cognition as 
processes in human mind involving concepts, instincts, emotions, memory, 
imagination are not well known, although significant progress in this direction was 
achieved [5,8]. A brief historical overview of this area including difficulties and 
controversies is given in the next two sections from mathematical, psychological, and 
neural standpoints. It is followed by a mathematical description of cognitive 
processes, including image recognition, tracking, and fusion as variations of the same 
basic paradigm. Then the paper discusses the ways in which the mathematical 
description of cognition can be combined with language, taking advantage of recent 



 
 

 

progress in computational linguistics. It touches upon novel ideas of computational 
semiotics relating language and cognition through signs and symbols. Approaches to 
understanding-based web mining and building integrated multi-agent systems are 
discussed.  

In conclusion, I briefly touch on relationships between mathematical, 
psychological, and neural descriptions of cognitive processes and language as parts of 
the mind. It turns out that, far from being esoteric abilities far removed from 
engineering applications, these abilities are inseparable from a mathematical 
description of even simplest cognition processes. Their understanding is helpful for 
developing integrated multi-agent systems. 

 
 

2  Theories of the Mind and Combinatorial Complexity 
 
Understanding signals coming from sensory organs involves associating subsets 

of signals corresponding to particular objects with internal representations of these 
objects. This leads to recognition of the objects. Developing mathematical 
descriptions of this very first recognition step was not easy; a number of difficulties 
were encountered during the past fifty years. These difficulties were summarized 
under the notion of combinatorial complexity (CC) [9]. CC refers to multiple 
combinations of various elements in a complex system; recognition of a scene often 
requires concurrent recognition of its multiple elements that could be encountered in 
various combinations. CC is prohibitive because the number of combinations is very 
large: for example, consider 100 elements (not too large a number); the number of 
combinations of 100 elements is 100100, exceeding the number of elementary particles 
in a Universe; no computer would ever be able to compute that many combinations. 

The problem was first identified in pattern recognition and classification research 
in the 1960s and was named “the curse of dimensionality” [10]. The following forty 
years of developing intelligent systems faced CC in various forms. Self-learning 
systems encountered CC of learning requirements. Logic-rule AI systems [11] and the 
first Chomsky ideas concerning mechanisms of language grammar related to deep 
structure [12] encountered CC of rules. Model-based systems were proposed to 
combine advantages of adaptivity and learning with rules by utilizing adaptive 
models. Along similar lines were rules and parameters ideas of Chomsky [13]. 
Model-based systems encountered computational CC (N and NP complete 
algorithms). The CC became a ubiquitous feature of intelligent algorithms and 
seemingly, a fundamental mathematical limitation. 

CC was related to the type of logic, underlying various algorithms and neural 
networks [9]. CC of algorithms based on logic was related to the Gödel theory: It is a 
finite system manifestation of the incompleteness of logic [14]. Multivalued logic and 
fuzzy logic were proposed to overcome limitations related to the law of excluded 
third [15]. Yet the mathematics of multivalued logic is no different in principle from 
formal logic. Fuzzy logic encountered a difficulty related to the degree of fuzziness: 
If too much fuzziness is specified, the solution does not achieve a needed accuracy, if 
too little, it becomes similar to formal logic.  

Various approaches to signal and communication integration are related to 
mathematical methods considered above. For example, an influential and general 
method of Multiple Hypothesis Testing (MHT) is a model-based method. Its 



 
 

 

combinatorial complexity is widely appreciated. Combinatorial complexity prevents 
these mathematical methods from achieving human-like flexibility and adaptivity. In 
section 4 we discuss a biologically inspired mathematical technique, which 
overcomes CC. The biological inspirations for this approach are briefly summarized 
in the next section 3. 

 
 

3 Mind: Instincts, Concepts, and Emotions 
 
Among fundamental mechanisms of the mind are instincts, concepts, emotions, 

and control of behavior. Instincts operate like internal sensors: for example, when a 
sugar level in blood goes below a certain level an instinct “tells us” to eat. Concepts 
are like internal models of the objects and situations; this analogy is quite literal, e.g., 
during visual perception of an object, an internal concept-model projects an image 
onto the visual cortex, which is matched there to an image projected from retina (this 
simplified description will be refined later). Emotions are neural signals connecting 
instinctual and conceptual brain regions. Whereas in colloquial usage, emotions are 
often understood as facial expressions, higher voice pitch, exaggerated gesticulation, 
these are the outward signs of emotions, serving for communication. A more 
fundamental role of emotions within the mind system is that emotional signals 
evaluate concepts for the purpose of instinct satisfaction [16]. This emotional 
mechanism described in the next section is crucial for breaking out of the “vicious 
circle” of combinatorial complexity. Conceptual-emotional understanding of the 
world leads to actions (or behavior) in the outside world or within the mind. In this 
paper we describe only one type of behavior, the behavior of learning that is 
improving understanding and knowledge of the language and world. 

 
 

4 Modeling Field Theory (MFT) 
 
The mind involves a hierarchy of multiple levels of concept-models, from simple 

perceptual elements (like edges, or moving dots), to concept-models of objects, to 
complex scenes, etc. Modeling field theory (MFT) [5], summarized below, associates 
lower-level signals with higher-level concept-models; a result is an understanding of 
signals as concepts. The difficulties of CC described in Section 2 are avoided. It is 
achieved by a new type of logic, the fuzzy dynamic logic. MFT is a multi-level, 
hetero-hierarchical system. We start with a basic mechanism of interaction at a single 
level.  

At each level, the output signals are concepts recognized (or formed) in input 
signals. Input signals are associated with concepts according to the representations-
models and similarity measures at this level. In the process of association-recognition, 
models are adapted for better representation of the input signals; and similarity 
measures are adapted so that their fuzziness is matched to the model uncertainty. The 
initial uncertainty of models is high and so is the fuzziness of the similarity measure; 
in the process of learning models become more accurate and the similarity more crisp, 
the value of the similarity measure increases. This is a mechanism of fuzzy dynamic 
logic.  



 
 

 

Input signals {X(n)} are enumerated by n = 1,… N; concept-models h = 1,… H, 
are characterized by the models (representations) {Mh(n)} of the signals X(n); each 
model depends on its parameters {Sh}, Mh(Sh,n). In a highly simplified description of 
a visual cortex, n enumerates the visual cortex neurons, X(n) are the “bottom-up” 
activation levels of these neurons coming from the retina through visual nerve, and 
Mh(n) are the “top-down” activation levels (or priming) of the visual cortex neurons 
from previously learned object-models17. Cognition process attempts to “match” top-
down and bottom-up activations by selecting “best” models and their parameters. 
Computationally, it increases a similarity measure between the sets of models and 
signals, L({X(n)},{Mh(n)}) [5].   

 
L({X},{M}) = 

n∈N
∏

h∈H
∑ r(h) l(X(n) | Mh(n));  (1) 

 
here, l(X(n)|Mh(n)) (or simply l(n|h)) is a conditional partial similarity between one 
signal X(n) and one model Mh(n); (1) accounts for all possible combinations of 
signals and models. Parameters r(h) are proportional to the number of signals {n} 
associated with the model h. Maximization of similarity has the following 
psychological and neurobiological interpretation: it is an instinctual behavior that 
evolved with the purpose of understanding the world, it is instinct for knowledge. 

Note, that (1) contains a large number of combinations of models and signals, a 
total of HN items; this was a cause for the combinatorial complexity of the past 
algorithms discussed in section 2. MFT solves this problem using the mechanism of 
fuzzy dynamic logic (DL) [5,18]. The DL iteration’s consist of two steps: first compute 
fuzzy association variables f(h|n), then improve parameters 

 
f(h|n) = r(h) l(n|h) /

h '∈H
∑ r(h') l(n|h'). (2) 

Sh = (1-α) Sh + α∑
n

f(h|n)[∂lnl(n|h)/∂Mh]∂M'
h/∂Sh, (3) 

r(h) = Nh / N;     Nh = ∑
n

f(h|n);   (4) 

 
Here, parameter α determines the iteration step and speed of convergence of the MF 
system; Nh can be interpreted as a number of signals X(n) associated with or coming 
from a concept-model n. After step (3, 4) the iterations returns to step (2) and 
continues until changes in parameters become negligible and similarity (1) stop 
increasing). The following theorem was proven [5]. 

Theorem. Equations (2) through (6) define a convergent dynamic system MF with 
stationary states given by max{Sh}L.  

In plain language this means that the above equations indeed result in concept-
models in the “mind” of the MFT system, which are most similar [in terms of 
similarity (1)] to the sensory data. Despite a combinatorially large number of items in 
(1), a computational complexity of the MF method is relatively low, it is linear in N. 
This theorem is proved by demonstrating that similarity (1) increases at each iteration 



 
 

 

[5]. Psychological and neurobiological interpretation of this fact is that instinct for 
knowledge is satisfied with each iteration; MFT system ‘enjoys’ the process of 
convergence to better knowledge. 

Summary of the MF convergence: during an adaptation process, initial fuzzy and 
uncertain models are associated with structures in the input signals, fuzzy models are 
getting more definite and crisp. The type, shape and number of models are selected so 
that the internal representation within the system is similar to input signals: the MF 
concept-models represent structure-objects in the signals. Computations describing 
this process are given by fuzzy dynamic logic eqs. (2, 3, 4). It is illustrated in Fig. 1 
for recognition of ‘smiles’ and ‘frowns’ in the background of a strong noise. In terms 
of the mind, it describes an elementary cognition process involving instincts, 
imagination, emotions and concepts, but before discussing this cognitive-
psychological interpretations, lets us briefly look into integrating this process with 
language. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Finding ‘smile’ and ‘frown’ patterns in noise, an example of dynamic logic 

operation: (a) true ‘smile’ and ‘frown’ patterns shown without noise; (b) actual image available 
for recognition (signal is below noise, signal-to-noise ratio is between –2dB and –0.7dB); (c) 
an initial fuzzy model, the fuzziness corresponds to uncertainty of knowledge; (d) through (h) 
show improved models at various iteration stages (total of 22 iterations). At stage (d) the 
algorithm tried to fit the data with more than one model and decided, that it needs three models 
to ‘understand’ the content of the data. There are three types of models: one uniform model 
describing noise (it is not shown) and a variable number of blob-models and parabolic models, 
which number, location and curvature are estimated from the data. Until about stage (g) the 
algorithm ‘thought’ in terms of simple blob models, at (g) and beyond, the algorithm decided 
that it needs more complex parabolic models to describe the data. Iterations stopped at (h), 
when similarity (1) stopped increasing. This example is discussed in more details in [19]. 
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By using concept-models with multiple sensor modalities, a MFT system can 
integrate signals from multiple sensors, while adapting and improving internal 
concept-models. Similarly, MFT can be used to integrate all sources of information, 
in particular, cognition and language. This requires linguistic MFT models, which can 
be developed using known linguistic structures [3,4,6,7,20]. Here, I briefly outline an 
approach to the development of MFT linguistic models.  

Let us discuss the development of models of phrases from words for the purpose 
of text understanding. The input data, X(n), in this “phrase-level” MF system, are 
word strings, for simplicity, of a fixed length, S, X(n)  = { wn+1, wn+2… wn+S }. Here 
wn are words from a given dictionary of size K, W = {w1, w2… wK}, and n is the 
word position in a body of texts. A simple phrase model is a subset of words from the 
dictionary, without any order or rules of grammar (computational linguists call it 
‘bag’ model), 

 
Mh(Sh,n) = {wh,1, wh,2… wh,S}; (6) 
 

the parameters of this model are its words, Mh(Sh,n) = Sh = {wh,1, wh,2… wh,S}. 
Language learning in this simplified context consists in defining models-concepts-
phrases best characterizing the given body of texts in terms of a similarity measure. 
Extension of DL to language was considered in [21]. It can be applied to bag models 
and to other known structures of natural languages, such as noun and verb phrases, 
tree structures, etc. [3,4,6,7,20,22,23]. This accomplishes the goal of the language 
acquisition project without combinatorial complexity. This technique can be applied 
to the development of understanding-based web search engines. A hierarchical 
language-MFT is developed with higher levels of the hierarchy extending ‘above’ 
phrases to learning the contents of paragraphs, pages, documents.  

 Integration of language and cognition in MFT is attained by characterizing 
objects and situations in the world with two types of models, cognitive and language 
models; so that in eqs. (1) through (4) Mh(n) = {M1h1(n), M2h2(n)}, M1 for cognitive 
and M2 for language models. Indexes h1 and h2 innumerate cognitive and language 
models; but it is not necessary to consider combinations of h1 and h2, because 
initially all models are same, fuzzy blobs, just placeholders for future knowledge. The 
above equations describe a single agent with a MFT-mind.  

A MFT agent can be used in a particular application alone or as a part of 
collaborative multi-agent environment. A single MFT agent can utilize complex 
adaptive models, and can learn from data and signals. Several applications of this 
type were developed [5,22]. The more specific the models are, the less data will be 
required for learning. A different evolutionary approach can start with simple models 
and develop complex models and abilities as a result of evolution of a multi-agent 
MFT system. Multiple agents can learn from their environment along with 
communicating among themselves or within a collaborative environment with human. 
First steps toward the development of evolving systems with cognitive and 
communicating multiple agents with a MFT mind are described in [24,25]. 

An integrated MFT system learns similarly to human, in parallel in three realms: 
(1) language and cognitive models are learned jointly, when language data are present 
in association with perception signals, like during mother talking to a baby: “this is a 
car” (perception-models and word-models), and like during more complicated 



 
 

 

conversations: “Look at Peter and Ann, they are in love” (cognitive-models and 
phrase-models); (2) language models are learned independently from cognition, when 
language data are encountered for the first time with no association with perception 
and cognition (most of language learning during the age 2 to 7); (3) similarly, 
cognitive models are learned independently from language, when perception signal 
data are encountered for the first time without association with linguistic data. In (2) 
and (3) above it is important to emphasize that cognitive and language learning 
enhance each other. The original, inborn models are fuzzy structures equally and 
poorly matching any sensory or language data. In the process of learning fuzziness 
decreases, crisp models get associated with specific situations and phrases, and 
cognitive models always remain associated with language models. Due to the 
integrated (cognitive, language)-model structures, association between language and 
cognition begins at a “pre-conceptual” fuzzy level, inaccessible to consciousness. 
Similarly a child learns a large number of language models, which association with 
real life is very fuzzy; throughout later life they facilitate learning of corresponding 
cognitive models; similarly, cognitive (say visual) models facilitate learning of 
language models; eventually h1 and h2, cognitive and language models are properly 
associated (that is similar across the system, so that people and computers understand 
each other).  

 
 

5 Conclusion 
  
At the beginning of this paper I summarized some justifications for following 

biological examples in engineering system design. Still, often one can hear a 
question: Why does an engineer need to know about concepts and emotions? After 
mathematical equations are derived, why not just use them for developing computer 
code, why should an engineer be concerned with interpretations of these equations in 
terms of instincts and emotions? This question is profound and an answer can be 
found in history of science and engineering. Newtonian laws can be written in few 
lines, but an engineering manager cannot hand these few lines to a young engineer 
and ask to design an airplane or rocket. Similarly, Maxwell’s equations contain the 
main principles of radar and communication, but radars and communication systems 
cannot be built without knowledge of electromagnetic phenomenology. For the same 
reason, MFT and dynamic logic equations need to be supplemented by understanding 
phenomenology of the mind signal processing to be efficiently applied to design of 
high level fusion systems. For this reason in conclusion of this paper we summarize 
the main aspects of working of the mind as described by the equations given in this 
paper. 

Equations in section 4 describe elementary processes of perception or cognition, 
in which a number of model-concepts compete for incoming signals, model-concepts 
are modified and new ones are formed, and eventually, more or less definite 
connections [high values of f(h|n), close to 1] are established among signal subsets on 
the one hand and some model-concepts on the other, accomplishing perception and 
cognition. 

A salient mathematical property of this process is the correspondence between 
uncertainty in models and fuzziness in associations f(h|n). In perception, as long as 
model parameters do not correspond to actual objects, there is no match between 



 
 

 

models and signals; many models poorly match many objects, and associations 
remain fuzzy (between 0 and 1). Eventually, one model (h') wins a competition for a 
subset {n'} of input signals X(n). In other words, a subset of data is recognized as a 
specific object (concept). Upon convergence, the entire set of input signals {n} is 
divided into subsets, each associated with one model-object, uncertainties become 
small, and fuzzy concept-models become crisp concepts. The general mathematical 
laws of cognition and perception are similar and constitute a basic principle of the 
mind organization. Kant was the first one to propose that the mind functioning 
involves three basic abilities: Pure Reason (concept-models), Judgment (emotional 
measure of correspondence between models and input signals), and Practical Reason 
(behavior; we only considered here the behavior of adaptation and learning) [26,27,28]. 
We now briefly discuss relationships between the MFT theory and concepts of mind 
originated in psychology, philosophy, linguistics, aesthetics, neuro-physiology, neural 
networks, artificial intelligence, pattern recognition, and intelligent systems. 

A thought-process or cognition involves a number of sub-processes and attributes, 
including internal representations and their manipulation, attention, memory, concept 
formation, knowledge, generalization, recognition, understanding, meaning, 
prediction, imagination, intuition, emotion, decisions, reasoning, goals, behavior, 
conscious and unconscious [5,8]. We discuss how these processes are described by 
MFT. 

A “minimal” subset of these processes, an elementary thought-process, has to 
involve mechanisms for afferent and efferent signals [8], in other words, bottom-up 
and top-down signals. According to Carpenter and Grossberg [29] every recognition 
and concept formation process involves a “resonance” between these two types of 
signals. In MFT, at every level in a hierarchy the afferent signals are represented by 
the input signal field X, and the efferent signals are represented by the modeling 
fields Mh; resonances correspond to high similarity values l(n|h) for some subsets of 
{n} that are “recognized” as concepts (or objects). The mechanism leading to the 
resonances between incoming signals and internal representations is given by 
equations in section 4.  

A description of the workings of the mind as given by the MFT dynamics was 
first provided by Aristotle [30], describing cognition as a learning process in which an 
a priori form-as-potentiality (fuzzy model) meets matter (sensory signals) and 
becomes a form-as-actuality (a logical concept). Jung suggested that conscious 
concepts are developed by the mind based on genetically inherited structures, 
archetypes, which are inaccessible to consciousness [31] and Grossberg [8] suggested 
that only signals and models attaining a resonant state (that is, signals matching 
models) reach consciousness. Fuzzy uncertain models are less accessible to 
consciousness, whereas more crisp and certain models are better accessible to 
consciousness. 

Recognizing objects in the environment and understanding their meaning is so 
important for human evolutionary success that an instinct has evolved for learning 
and improving concept-models. This instinct (for knowledge and learning) is 
described in MFT by maximization of similarity between the models and the world, 
eq. (1). Emotions related to satisfaction-dissatisfaction of this instinct we perceive as 
harmony-disharmony (between our understanding of how things ought to be and how 
they actually are in the surrounding world). Since Kant [27], emotions that are not 
related directly to bodily needs are called aesthetic emotions. Aesthetic emotions in 



 
 

 

MFT correspond to changes in the knowledge instinct (1). The mathematical basis for 
the theorem in section 4 can be interpreted psychologically: during dynamic logic 
iterations the aesthetic emotion is always positive. MFT system ‘enjoys’ learning. 

Signs and symbols are essential for the workings of the human mind, as well as 
for accumulation and transmission of knowledge in human culture. They are also 
used extensively in intelligent and multi-level fusion systems. Scientific theories of 
signs and symbols, however, are not well developed, and even the exact meaning of 
these words is often confused. According to [32], “symbol” is the most misused word. 
We use this word in trivial cases referring, say, to traffic signs and in the most 
profound cases of cultural and religious symbols. In mathematics and in “Symbolic 
AI” there is no difference between signs and symbols. Both are considered to be 
notations, arbitrary non-adaptive entities with axiomatically fixed meaning. This non-
differentiation is a “hangover” from an old superstition that logic describes mind, a 
direction in mathematics and logical philosophy that can be traced through the works 
of Frege, Hilbert, Russell, to its bitter end in Gödel theory, and its revival during the 
1960s and 1970s in artificial intelligence. Profound use of the word “symbol” in 
general culture, according to Jung, is related to symbols being psychological 
processes of sign interpretation. Jung emphasized that symbol-processes connect the 
conscious and unconscious [31]. Pribram wrote of symbols as adaptive, context-
sensitive signals in the brain, whereas signs he identified with less adaptive and 
relatively context-insensitive neural signals [33]. Deacon [32] thought that the essence 
of the human symbolic ability is two interacting parallel hierarchies, like described in 
section 4 hierarchy of cognitive models and a hierarchy of sign (language) models; he 
called it symbolic reference. 

Combining mathematical developments in sections 4 with the above discussion, 
we reach the following conclusion for consistent meanings of signs and symbols. The 
essence of a sign is that it is an arbitrary notation, which can be interpreted by our 
mind or by an intelligent system to refer to something else, to an object or situation. 
Symbols are psychological processes of sign interpretation, they are equivalent to 
elementary thought processes, and they integrate unconscious (fuzzy models) with 
conscious (crisp models). A simple symbol process is mathematically described by a 
single MFT level, like in section 4. A complex symbol-process of cognition of 
culturally important concepts may take hundreds of years in human societies and 
many generations of MFT agents; it may involve multiple levels of MFT or the mind 
hierarchy. Future sensor-webs will be designed using this biological knowledge. 
They will participate in human-computer collaborative networks. They will evolve 
through generations of agents. They will integrate the learning of language with the 
learning of complex cognitive concepts. They will integrate communication with 
sensor signal processing, and instead of quick obsolescence, their performance will 
improve with time and experience by accumulating knowledge similar to human 
cultures. 
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